Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Protein Sci ; 33(4): e4935, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38501462

RESUMO

Flavin-dependent monooxygenases (FMOs) constitute a diverse enzyme family that catalyzes crucial hydroxylation, epoxidation, and Baeyer-Villiger reactions across various metabolic pathways in all domains of life. Due to the intricate nature of this enzyme family's mechanisms, some aspects of their functioning remain unknown. Here, we present the results of molecular dynamics computations, supplemented by a bioinformatics analysis, that clarify the early stages of their catalytic cycle. We have elucidated the intricate binding mechanism of NADPH and L-Orn to a class B monooxygenase, the ornithine hydroxylase from Aspergillus $$ Aspergillus $$ fumigatus $$ fumigatus $$ known as SidA. Our investigation involved a comprehensive characterization of the conformational changes associated with the FAD (Flavin Adenine Dinucleotide) cofactor, transitioning from the out to the in position. Furthermore, we explored the rotational dynamics of the nicotinamide ring of NADPH, shedding light on its role in facilitating FAD reduction, supported by experimental evidence. Finally, we also analyzed the extent of conservation of two Tyr-loops that play critical roles in the process.


Assuntos
Flavina-Adenina Dinucleotídeo , Oxigenases de Função Mista , Oxigenases de Função Mista/química , NADP/química , Oxirredução , Domínio Catalítico , Flavina-Adenina Dinucleotídeo/química
2.
Arch Biochem Biophys ; 754: 109949, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430968

RESUMO

Zonocerus variegatus, or the painted grasshopper, is a food crop pest endemic in Western and Central Africa. Agricultural industries in these regions rely heavily on natural defense mechanisms to control the grasshopper population such as plant-secreted alkaloid compounds. In recent years, the Z. variegatus population has continued to rise due to acquired resistance to alkaloids. Here we focus on the kinetic characterization of a flavin-dependent monooxygenase, ZvFMO, that catalyzes the nitrogen oxidation of many of these alkaloid compounds and confers resistance to the insect. Expression and purification of ZvFMO through a traditional E. coli expression system was successful and provided a unique opportunity to characterize the catalytic properties of an FMO from insects. ZvFMO was found to catalyze oxidation reactions of tertiary nitrogen atoms and the sulfur of cysteamine. Using stopped-flow spectroscopy, we have determined the kinetic mechanism of ZvFMO. We assessed F383 for its involvement in substrate binding, which was previously proposed, and determined that this residue does not play a major role in binding substrates. Through molecular docking, we identified N304 and demonstrated that this residue plays a role in substrate binding. The role of K215 was studied and was shown that it plays a critical role in NAD(P)H binding and cofactor selectivity.


Assuntos
Alcaloides , Gafanhotos , Animais , Oxigenases de Função Mista/química , Escherichia coli , Simulação de Acoplamento Molecular , Cinética , Compostos Orgânicos , Flavinas , Nitrogênio
4.
Microbiol Spectr ; 10(6): e0387722, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36377931

RESUMO

With the pressing antibiotic resistance pandemic, antivirulence has been increasingly explored as an alternative strategy against bacterial infections. The bacterial type IV pilus (T4P) is a well-documented virulence factor and an attractive target for small molecules for antivirulence purposes. The PilB ATPase is essential for T4P biogenesis because it catalyzes the assembly of monomeric pilins into the polymeric pilus filament. Here, we describe the identification of two PilB inhibitors by a high-throughput screen (HTS) in vitro and their validation as effective inhibitors of T4P assembly in vivo. We used Chloracidobacterium thermophilum PilB as a model enzyme to optimize an ATPase assay for the HTS. From a library of 2,320 compounds, benserazide and levodopa, two approved drugs for Parkinson's disease, were identified and confirmed biochemically to be PilB inhibitors. We demonstrate that both compounds inhibited the T4P-dependent motility of the bacteria Myxoccocus xanthus and Acinetobacter nosocomialis. Additionally, benserazide and levodopa were shown to inhibit A. nosocomialis biofilm formation, a T4P-dependent process. Using M. xanthus as a model, we showed that both compounds inhibited T4P assembly in a dose-dependent manner. These results suggest that these two compounds are effective against the PilB protein in vivo. The potency of benserazide and levodopa as PilB inhibitors both in vitro and in vivo demonstrate potentials of the HTS and its two hits here for the development of anti-T4P chemotherapeutics. IMPORTANCE Many bacterial pathogens use their type IV pilus (T4P) to facilitate and maintain an infection in a human host. Small-molecule inhibitors of the production or assembly of the T4P are promising for the treatment and prevention of infections by these bacteria, especially in our fight against antibiotic-resistant pathogens. Here, we report the development and implementation of a method to identify anti-T4P chemicals from compound libraries by high-throughput screen. This led to the identification and validation of two T4P inhibitors both in the test tubes and in bacteria. The discovery and validation pipeline reported here as well as the confirmation of two anti-T4P inhibitors provide new venues and leads for the development of chemotherapeutics against antibiotic-resistant infections.


Assuntos
Adenosina Trifosfatases , Proteínas de Bactérias , Fímbrias Bacterianas , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Benserazida/farmacologia , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/metabolismo , Levodopa/farmacologia
5.
Biochemistry ; 61(22): 2607-2620, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36314559

RESUMO

Acinetobacter baumannii is a Gram-negative opportunistic pathogen that causes nosocomial infections, especially among immunocompromised individuals. The rise of multidrug resistant strains of A. baumannii has limited the use of standard antibiotics, highlighting a need for new drugs that exploit novel mechanisms of pathogenicity. Disrupting iron acquisition by inhibiting the biosynthesis of iron-chelating molecules (siderophores) secreted by the pathogen is a potential strategy for developing new antibiotics. Here we investigated FbsI, an N-hydroxylating monooxygenase involved in the biosynthesis of fimsbactin A, the major siderophore produced by A. baumannii. FbsI was characterized using steady-state and transient-state kinetics, spectroscopy, X-ray crystallography, and small-angle X-ray scattering. FbsI was found to catalyze the N-hydroxylation of the aliphatic diamines putrescine and cadaverine. Maximum coupling of the reductive and oxidative half-reactions occurs with putrescine, suggesting it is the preferred (in vivo) substrate. FbsI uses both NADPH and NADH as the reducing cofactor with a slight preference for NADPH. The crystal structure of FbsI complexed with NADP+ was determined at 2.2 Å resolution. The structure exhibits the protein fold characteristic of Class B flavin-dependent monooxygenases. FbsI is most similar in 3D structure to the cadaverine N-hydroxylases DesB and DfoA. Small-angle X-ray scattering shows that FbsI forms a tetramer in solution like the N-hydroxylating monooxygenases of the SidA/IucD/PvdA family. A model of putrescine docked into the active site provides insight into substrate recognition. A mechanism for the catalytic cycle is proposed where dehydration of the C4a-hydroxyflavin intermediate is partially rate-limiting, and the hydroxylated putrescine product is released before NADP+.


Assuntos
Acinetobacter baumannii , Oxigenases de Função Mista , Acinetobacter baumannii/enzimologia , Antibacterianos , Cadaverina , Flavinas/metabolismo , Cinética , Oxigenases de Função Mista/química , NADP/metabolismo , Ornitina/química , Putrescina , Sideróforos
6.
Biochemistry ; 60(38): 2851-2864, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34516102

RESUMO

N-hydroxylating monooxygenases (NMOs) are a subclass of flavin-dependent enzymes that hydroxylate nitrogen atoms. Recently, unique NMOs that perform multiple reactions on one substrate molecule have been identified. Fosfazinomycin M (FzmM) is one such NMO, forming nitrosuccinate from aspartate (Asp) in the fosfazinomycin biosynthetic pathway in some Streptomyces sp. This work details the biochemical and kinetic analysis of FzmM. Steady-state kinetic investigation shows that FzmM performs a coupled reaction with Asp (kcat, 3.0 ± 0.01 s-1) forming nitrosuccinate, which can be converted to fumarate and nitrite by the action of FzmL. FzmM displays a 70-fold higher kcat/KM value for NADPH compared to NADH and has a narrow optimal pH range (7.5-8.0). Contrary to other NMOs where the kred is rate-limiting, FzmM exhibits a very fast kred (50 ± 0.01 s-1 at 4 °C) with NADPH. NADPH binds at a KD value of ∼400 µM, and hydride transfer occurs with pro-R stereochemistry. Oxidation of FzmM in the absence of Asp exhibits a spectrum with a shoulder at ∼370 nm, consistent with the formation of a C(4a)-hydroperoxyflavin intermediate, which decays into oxidized flavin and hydrogen peroxide at a rate 100-fold slower than the kcat. This reaction is enhanced in the presence of Asp with a slightly faster kox than the kcat, suggesting that flavin dehydration or Asp oxidation is partially rate limiting. Multiple sequence analyses of FzmM to NMOs identified conserved residues involved in flavin binding but not for NADPH. Additional sequence analysis to related monooxygenases suggests that FzmM shares sequence motifs absent in other NMOs.


Assuntos
Hidrazinas/metabolismo , Compostos Organofosforados/metabolismo , Dinitrocresóis , Flavina-Adenina Dinucleotídeo/metabolismo , Flavinas/metabolismo , Hidroxilação/fisiologia , Cinética , Oxigenases de Função Mista/metabolismo , NADP/metabolismo , Oxirredução , Ácido Succínico/metabolismo
7.
ACS Omega ; 6(28): 18537-18547, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34308084

RESUMO

Acinetobacter baumannii is an opportunistic pathogen with a high mortality rate due to multi-drug-resistant strains. The synthesis and uptake of the iron-chelating siderophores acinetobactin (Acb) and preacinetobactin (pre-Acb) have been shown to be essential for virulence. Here, we report the kinetic and structural characterization of BauF, a flavin-dependent siderophore-interacting protein (SIP) required for the reduction of Fe(III) bound to Acb/pre-Acb and release of Fe(II). Stopped-flow spectrophotometric studies of the reductive half-reaction show that BauF forms a stable neutral flavin semiquinone intermediate. Reduction with NAD(P)H is very slow (k obs, 0.001 s-1) and commensurate with the rate of reduction by photobleaching, suggesting that NAD(P)H are not the physiological partners of BauF. The reduced BauF was oxidized by Acb-Fe (k obs, 0.02 s-1) and oxazole pre-Acb-Fe (ox-pre-Acb-Fe) (k obs, 0.08 s-1), a rigid analogue of pre-Acb, at a rate 3-11 times faster than that with molecular oxygen alone. The structure of FAD-bound BauF was solved at 2.85 Å and was found to share a similarity to Shewanella SIPs. The biochemical and structural data presented here validate the role of BauF in A. baumannii iron assimilation and provide information important for drug design.

8.
mSphere ; 6(2)2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658276

RESUMO

The bacterial type IV pilus (T4P) is a prominent virulence factor in many significant human pathogens, some of which have become increasingly antibiotic resistant. Antivirulence chemotherapeutics are considered a promising alternative to antibiotics because they target the disease process instead of bacterial viability. However, a roadblock to the discovery of anti-T4P compounds is the lack of a high-throughput screen (HTS) that can be implemented relatively easily and economically. Here, we describe the first HTS for the identification of inhibitors specifically against the T4P assembly ATPase PilB in vitroChloracidobacterium thermophilum PilB (CtPilB) had been demonstrated to have robust ATPase activity and the ability to bind its expected ligands in vitro. We utilized CtPilB and MANT-ATP, a fluorescent ATP analog, to develop a binding assay and adapted it for an HTS. As a proof of principle, we performed a pilot screen with a small compound library of kinase inhibitors and identified quercetin as a PilB inhibitor in vitro Using Myxococcus xanthus as a model bacterium, we found quercetin to reduce its T4P-dependent motility and T4P assembly in vivo. These results validated our HTS as effective in identifying PilB inhibitors. This assay may prove valuable in seeking leads for the development of antivirulence chemotherapeutics against PilB, an essential and universal component of all bacterial T4P systems.IMPORTANCE Many bacterial pathogens use their type IV pili (T4P) to facilitate and maintain infection of a human host. Small chemical compounds that inhibit the production or assembly of T4P hold promise in the treatment and prevention of infections, especially in the era of increasing threats from antibiotic-resistant bacteria. However, few chemicals are known to have inhibitory or anti-T4P activity. Their identification has not been easy due to the lack of a method for the screening of compound collections or libraries on a large scale. Here, we report the development of an assay that can be scaled up to screen compound libraries for inhibitors of a critical T4P assembly protein. We further demonstrate that it is feasible to use whole cells to examine potential inhibitors for their activity against T4P assembly in a bacterium.


Assuntos
Acidobacteria/efeitos dos fármacos , Proteínas de Bactérias/antagonistas & inibidores , Fímbrias Bacterianas/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Oxirredutases/antagonistas & inibidores , Fatores de Virulência/antagonistas & inibidores , Acidobacteria/enzimologia , Acidobacteria/genética , Proteínas de Bactérias/metabolismo , Fímbrias Bacterianas/fisiologia , Modelos Moleculares , Oxirredutases/metabolismo , Quercetina/farmacologia , Bibliotecas de Moléculas Pequenas/análise , Bibliotecas de Moléculas Pequenas/farmacologia , Fatores de Virulência/metabolismo
9.
Arch Biochem Biophys ; 699: 108765, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33460580

RESUMO

Flavin-dependent monooxygenases catalyze a wide variety of redox reactions in important biological processes and are responsible for the synthesis of highly complex natural products. Although much has been learned about FMO chemistry in the last ~80 years of research, several aspects of the reactions catalyzed by these enzymes remain unknown. In this review, we summarize recent advancements in the flavin-dependent monooxygenase field including aspects of flavin dynamics, formation and stabilization of reactive species, and the hydroxylation mechanism. Novel catalysis of flavin-dependent N-oxidases involving consecutive oxidations of amines to generate oximes or nitrones is presented and the biological relevance of the products is discussed. In addition, the activity of some FMOs have been shown to be essential for the virulence of several human pathogens. We also discuss the biomedical relevance of FMOs in antibiotic resistance and the efforts to identify inhibitors against some members of this important and growing family enzymes.


Assuntos
Flavoproteínas/química , Oxigenases de Função Mista/química , Animais , Bactérias/enzimologia , Biocatálise , Descoberta de Drogas , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Flavinas/química , Flavinas/metabolismo , Flavoproteínas/antagonistas & inibidores , Flavoproteínas/metabolismo , Humanos , Hidroxilação , Oxigenases de Função Mista/antagonistas & inibidores , Oxigenases de Função Mista/metabolismo , Ligação Proteica , Conformação Proteica
10.
Arch Biochem Biophys ; 697: 108696, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33245912

RESUMO

Halogenated organic compounds are extensively used in the cosmetic, pharmaceutical, and chemical industries. Several naturally occurring halogen-containing natural products are also produced, mainly by marine organisms. These compounds accumulate in the environment due to their chemical stability and lack of biological pathways for their degradation. However, a few enzymes have been identified that perform dehalogenation reactions in specific biological pathways and others have been identified to have secondary activities toward halogenated compounds. Various mechanisms for dehalogenation of I, Cl, Br, and F containing compounds have been elucidated. These have been grouped into reductive, oxidative, and hydrolytic mechanisms. Flavin-dependent enzymes have been shown to catalyze oxidative dehalogenation reactions utilizing the C4a-hydroperoxyflavin intermediate. In addition, flavoenzymes perform reductive dehalogenation, forming transient flavin semiquinones. Recently, flavin-dependent enzymes have also been shown to perform dehalogenation reactions where the reduced form of the flavin produces a covalent intermediate. Here, recent studies on the reactions of flavoenzymes in dehalogenation reactions, with a focus on covalent catalytic dehalogenation mechanisms, are described.


Assuntos
Dinitrocresóis/química , Halogenação , Dinitrocresóis/metabolismo , Oxirredução
11.
Biochemistry ; 60(1): 31-40, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33350810

RESUMO

The flavin reductase (FRED) and isobutylamine N-hydroxylase (IBAH) from Streptomyces viridifaciens constitute a two-component, flavin-dependent monooxygenase system that catalyzes the first step in valanimycin biosynthesis. FRED is an oxidoreductase that provides the reduced flavin to IBAH, which then catalyzes the hydroxylation of isobutylamine (IBA) to isobutylhydroxylamine (IBHA). In this work, we used several complementary methods to investigate FAD binding, steady-state and rapid reaction kinetics, and enzyme-enzyme interactions in the FRED:IBAH system. The affinity of FRED for FADox is higher than its affinity for FADred, consistent with its function as a flavin reductase. Conversely, IBAH binds FADred more tightly than FADox, consistent with its role as a monooxygenase. FRED exhibits a strong preference (28-fold) for NADPH over NADH as the electron source for FAD reduction. Isothermal titration calorimetry was used to study the association of FRED and IBAH. In the presence of FAD, either oxidized or reduced, FRED and IBAH associate with a dissociation constant of 7-8 µM. No interaction was observed in the absence of FAD. These results are consistent with the formation of a protein-protein complex for direct transfer of reduced flavin from the reductase to the monooxygenase in this two-component system.


Assuntos
Proteínas de Bactérias/metabolismo , FMN Redutase/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Oxigenases de Função Mista/metabolismo , Streptomyces/enzimologia , Compostos Azo/metabolismo , Hidroxilação , Cinética , NADPH Oxidases/metabolismo , Consumo de Oxigênio
12.
Biochemistry ; 59(48): 4609-4616, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33226785

RESUMO

The ornithine hydroxylase known as SidA is a class B flavin monooxygenase that catalyzes the first step in the biosynthesis of hydroxamate-containing siderophores in Aspergillus fumigatus. Crystallographic studies of SidA revealed that the FAD undergoes dramatic conformational changes between out and in states during the catalytic cycle. We sought insight into the origins and purpose of flavin motion in class B monooxygenases by probing the function of Met101, a residue that contacts the pyrimidine ring of the in FAD. Steady-state kinetic measurements showed that the mutant variant M101A has a 25-fold lower turnover number. Pre-steady-state kinetic measurements, pH profiles, and solvent kinetic isotope effect measurements were used to isolate the microscopic step that is responsible for the reduced steady-state activity. The data are consistent with a bottleneck in the final step of the mechanism, which involves flavin dehydration and the release of hydroxy-l-ornithine and NADP+. Crystal structures were determined for M101A in the resting state and complexed with NADP+. The resting enzyme structure is similar to that of wild-type SidA, consistent with M101A exhibiting normal kinetics for flavin reduction by NADPH and wild-type affinity for NADPH. In contrast, the structure of the M101A-NADP+ complex unexpectedly shows the FAD adopting the out conformation and may represent a stalled conformation that is responsible for the slow kinetics. Altogether, our data support a previous proposal that one purpose of the FAD conformational change from in to out in class B flavin monooxygenases is to eject spent NADP+ in preparation for a new catalytic cycle.


Assuntos
Aspergillus fumigatus/enzimologia , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Sequência de Aminoácidos , Aspergillus fumigatus/genética , Cristalografia por Raios X , Flavina-Adenina Dinucleotídeo/química , Flavina-Adenina Dinucleotídeo/metabolismo , Flavinas/química , Flavinas/metabolismo , Proteínas Fúngicas/genética , Cinética , Oxigenases de Função Mista/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Oxirredução , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sideróforos/biossíntese , Eletricidade Estática
14.
J Biol Chem ; 295(38): 13239-13249, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32723870

RESUMO

The siderophore biosynthetic enzyme A (SidA) ornithine hydroxylase from Aspergillus fumigatus is a fungal disease drug target involved in the production of hydroxamate-containing siderophores, which are used by the pathogen to sequester iron. SidA is an N-monooxygenase that catalyzes the NADPH-dependent hydroxylation of l-ornithine through a multistep oxidative mechanism, utilizing a C4a-hydroperoxyflavin intermediate. Here we present four new crystal structures of SidA in various redox and ligation states, including the first structure of oxidized SidA without NADP(H) or l-ornithine bound (resting state). The resting state structure reveals a new out active site conformation characterized by large rotations of the FAD isoalloxazine around the C1-'C2' and N10-C1' bonds, coupled to a 10-Å movement of the Tyr-loop. Additional structures show that either flavin reduction or the binding of NADP(H) is sufficient to drive the FAD to the in conformation. The structures also reveal protein conformational changes associated with the binding of NADP(H) and l-ornithine. Some of these residues were probed using site-directed mutagenesis. Docking was used to explore the active site of the out conformation. These calculations identified two potential ligand-binding sites. Altogether, our results provide new information about conformational dynamics in flavin-dependent monooxygenases. Understanding the different active site conformations that appear during the catalytic cycle may allow fine-tuning of inhibitor discovery efforts.


Assuntos
Aspergillus fumigatus/enzimologia , Proteínas Fúngicas/química , Oxigenases de Função Mista/química , Domínio Catalítico , Cristalografia por Raios X , Flavina-Adenina Dinucleotídeo/química , NADP/química , Ornitina/química
15.
J Biol Chem ; 295(32): 11042-11055, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32527723

RESUMO

Allicin is a component of the characteristic smell and flavor of garlic (Allium sativum). A flavin-containing monooxygenase (FMO) produced by A. sativum (AsFMO) was previously proposed to oxidize S-allyl-l-cysteine (SAC) to alliin, an allicin precursor. Here, we present a kinetic and structural characterization of AsFMO that suggests a possible contradiction to this proposal. Results of steady-state kinetic analyses revealed that AsFMO exhibited negligible activity with SAC; however, the enzyme was highly active with l-cysteine, N-acetyl-l-cysteine, and allyl mercaptan. We found that allyl mercaptan with NADPH was the preferred substrate-cofactor combination. Rapid-reaction kinetic analyses showed that NADPH binds tightly (KD of ∼2 µm) to AsFMO and that the hydride transfer occurs with pro-R stereospecificity. We detected the formation of a long-wavelength band when AsFMO was reduced by NADPH, probably representing the formation of a charge-transfer complex. In the absence of substrate, the reduced enzyme, in complex with NADP+, reacted with oxygen and formed an intermediate with a spectrum characteristic of C4a-hydroperoxyflavin, which decays several orders of magnitude more slowly than the kcat The presence of substrate enhanced C4a-hydroperoxyflavin formation and, upon hydroxylation, oxidation occurred with a rate constant similar to the kcat The structure of AsFMO complexed with FAD at 2.08-Å resolution features two domains for binding of FAD and NADPH, representative of class B flavin monooxygenases. These biochemical and structural results are consistent with AsFMO being an S-monooxygenase involved in allicin biosynthesis through direct formation of sulfenic acid and not SAC oxidation.


Assuntos
Alho/enzimologia , Oxigenases/metabolismo , Biopolímeros/metabolismo , Cisteína/metabolismo , Dissulfetos , Flavina-Adenina Dinucleotídeo/metabolismo , Peróxido de Hidrogênio/metabolismo , Hidroxilação , Cinética , NADP/metabolismo , Oxirredução , Oxigenases/química , Oxigenases/isolamento & purificação , Conformação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato , Ácidos Sulfínicos/metabolismo
16.
Arch Biochem Biophys ; 689: 108429, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32479762

RESUMO

Lysine is a precursor for desferrioxamine siderophore biosynthesis. The pathway is often initiated by lysine decarboxylases. However, little is known about those enzymes from Actinobacteria which represents a diverse class of desferrioxamine producers. In this study we focused on the genes grdesA form Gordonia rubripertincta CWB2 and psdesA from Pimelobacter simplex VkMAC-2033D that encode decarboxylases presumed to be involved in the synthesis of desferrioxamine siderophores. The corresponding proteins GrDesA and PsDesA, were heterologously produced in Escherichia coli and purified. PsDesA was isolated bound to the cofactor pyridoxal 5-phosphate and GrDesA was purified in its apo form. PsDesA showed a moderate substrate preference for lysine (Km = 0.17 mM, kcat = 0.26 s-1) compared to ornithine (Km = 0.13 mM, kcat = 0.14 s-1), while GrDesA exhibited specificity for lysine (Km = 0.13 mM, kcat = 1.2 s-1) compared to ornithine (Km = 2.9 mM, kcat = 0.18 s-1). The maximum decarboxylase activity of PsDesA was achieved at pH 7.5 at 35 °C, although PsDesA was stable up to 40°, its relative activity decreased significantly at 50 °C. The temperature optimum (40 °C) and thermostability of GrDesA were likewise, but it exhibited maximum activity at pH range 8.0-8.5, and sharply decreased outside of this range. The expression and characterization of these two decarboxylases provides insight into the biosynthetic pathway of desferrioxamines from G.rubripertincta and P. simplex and supports the functional annotation of related pathways.


Assuntos
Actinobacteria/enzimologia , Carboxiliases/metabolismo , Desferroxamina/metabolismo , Ornitina Descarboxilase/metabolismo , Sideróforos/metabolismo , Actinobacteria/metabolismo , Vias Biossintéticas , Especificidade por Substrato
17.
Methods Enzymol ; 620: 51-88, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31072501

RESUMO

The catalytic cycle of most flavin-dependent enzymes can be divided into oxidative and reductive half-reactions. Although some enzymes are oxidized by electron carrier proteins or organic compounds, many use oxygen as the final electron acceptor. In order to properly study the reductive half-reaction of flavin-dependent enzyme that react with oxygen, as in the case of oxidases and monooxygenases, it is necessary to establish anaerobic conditions that will only allow the reduction process to be monitored. The reduced flavoenzyme can be further studied by exposing it to oxygen to monitor the oxidative half-reaction. Anaerobic chambers provide an ideal environment for performing these experiments as they reliably maintain an anaerobic atmosphere inside a large workspace. A common tool used to study flavin-dependent enzymes is the stopped-flow spectrophotometry. This chapter describes methods for performing stopped-flow experiments in an anaerobic chamber. We include information about the chamber components, setting up a stopped-flow spectrophotometer inside of a chamber, preparing anaerobic solutions, and performing experiments to measure the reductive and oxidative half-reactions of flavin-dependent monooxygenases.


Assuntos
Ensaios Enzimáticos/métodos , Anaerobiose , Ensaios Enzimáticos/instrumentação , Flavinas/química , Flavoproteínas/química , Oxirredução , Oxirredutases/química , Espectrofotometria/instrumentação , Espectrofotometria/métodos
18.
J Chem Inf Model ; 59(2): 809-817, 2019 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-30608160

RESUMO

The enzyme UDP-galactopyranose mutase (UGM) represents a promising drug target for the treatment of infections with Trypanosoma cruzi. We have computed the Potential of Mean Force for the release of UDP-galactopyranose from UGM, using Umbrella Sampling simulations. The simulations revealed the conformational changes that both substrate and enzyme undergo during the process. It was determined that the galactopyranose portion of the substrate is highly mobile and that the opening/closing of the active site occurs in stages. Previously uncharacterized interactions with highly conserved residues were also identified. These findings provide new pieces of information that contribute to the rational design of drugs against T. cruzi.


Assuntos
Transferases Intramoleculares/química , Transferases Intramoleculares/metabolismo , Simulação de Dinâmica Molecular , Trypanosoma cruzi/enzimologia , Domínio Catalítico , Galactose/metabolismo , Cinética
19.
Protein Sci ; 28(1): 90-99, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30098072

RESUMO

Siderophore A (SidA) from Aspergillus fumigatus is a flavin-containing monooxygenase that hydroxylates ornithine (Orn) at the amino group of the side chain. Lysine (Lys) also binds to the active site of SidA; however, hydroxylation is not efficient and H2 O2 is the main product. The effect of pH on steady-state kinetic parameters was measured and the results were consistent with Orn binding with the side chain amino group in the neutral form. From the pH dependence on flavin oxidation in the absence of Orn, a pKa value >9 was determined and assigned to the FAD-N5 atom. In the presence of Orn, the pH dependence displayed a pKa value of 6.7 ±0.1 and of 7.70 ±0.10 in the presence of Lys. Q102 interacts with NADPH and, upon mutation to alanine, leads to destabilization of the C4a-hydroperoxyflavin (FADOOH ). Flavin oxidation with Q102A showed a pKa value of ~8.0. The data are consistent with the pKa of the FAD N5-atom being modulated to a value >9 in the absence of Orn, which aids in the stabilization of FADOOH . Changes in the FAD-N5 environment lead to a decrease in the pKa value, which facilitates elimination of H2 O2 or H2 O. These findings are supported by solvent kinetic isotope effect experiments, which show that proton transfer from the FAD N5-atom is rate limiting in the absence of a substrate, however, is significantly less rate limiting in the presence of Orn and or Lys.


Assuntos
Aspergillus fumigatus/enzimologia , Flavina-Adenina Dinucleotídeo/química , Proteínas Fúngicas/química , Oxigenases de Função Mista/química , Sideróforos/química , Oxirredução
20.
Biochemistry ; 57(25): 3445-3453, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29874467

RESUMO

The study of enzyme reaction mechanisms is fundamentally important to our understanding of biochemistry, cellular metabolism, and drug development. This Perspective focuses on the use of kinetic solvent viscosity effects (KSVEs) to study enzyme reactions. This technique is easily implemented and uses steady-state kinetic analyses to probe whether substrate binding is diffusion-controlled and whether product release is the rate-limiting step in the catalytic cycle. In addition, KSVEs can identify isomerization steps that are important for catalysis. The use of KSVEs in combination with other techniques, such as kinetic isotope effects, pH effects, and site-directed mutagenesis, can provide a detailed view of the mechanism of enzyme action. We present the basic theory, important experimental considerations, and potential outcomes and briefly discuss some examples from the literature. The derivation of the equations that are important for data analysis is also presented.


Assuntos
Ensaios Enzimáticos/métodos , Algoritmos , Animais , Biocatálise , Difusão , Humanos , Isomerismo , Cinética , Modelos Moleculares , Solventes/química , Especificidade por Substrato , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...